Cost estimate of Cleveland’s LakeVista Convention Center

Presented by
CITIZENS’ VISION
P.O. Box 32700
Cleveland, Ohio 44132-0700
Tel: (216) 514-7001
www.citizensvision.org
E-mail: info@citizensvision.org
Cost estimate of Cleveland’s LakeVista Convention Center

This proposed Center is to be located to the north of Mall C, connect to the existing Convention Center, and bridge across the freight and passenger rail lines as well as the rapid transit tracks. It will have a lakefront connector across the Shoreway that will have a branch leading to the Browns Stadium to allow the use of its meeting room facilities to augment the options for conventions.

Since the Citizens’ Vision proposed convention center building will be elevated above the rail lines like a bridge, and since it must withstand the weight of trucks, bridge figures were used to estimate cost. Two scenarios were considered using bridge cost estimating data from the Florida Department of Transportation:


NOTE: This analysis is strictly for the decks and supports. No finish work is included. No costs are included for the fireproofing of deck structures, or for the proposed multistory Medical Mart/Rock & Roll City Hotel building, or for the connector across the Shoreway.

Florida DOT rough estimates per square foot for a continuous span concrete deck/steel girder bridge range from $135 to $170 per square foot. Using these figures, the range of estimates is as follows:

For the “Champagne” building; 403,000 sq. ft.:
- Lower deck and supports only: $55 to $69 million.
- Lower and upper decks and supports: $109 to $137 million

For the “Boat” building; 493,000 sq. ft.:
- Lower deck and supports only: $67 to $84 million.
- Lower and upper decks and supports: $133 to $168 million

To confirm the validity of these rough estimates, a detailed cost analysis of a design of the 493,000 sq. ft. building was performed. This design specified beam and girder sizes, deck thickness, caisson numbers, size, and locations as well as other details. The design is based upon 90-foot spacing of columns. The detailed analysis falls close to the high end of the estimate range, which helps give confidence in all of the figures.

Two independent sources were use for estimating the caissons. The two figures were within 12 percent of each other, giving confidence in their validity. The larger number was used for the analysis.

Conclusion of detailed cost analysis of the 493,000 sq. ft. building:
- Caissons and lower deck only: $85 million
- Columns and upper deck only: $72 million
- Total for both decks: $157 million
COST AND LOAD-BEARING CAPACITY OF CAISSONS FOR “BOAT” CONVENTION CENTER

Height of caisson = 125 ft
Diameter of caisson = 5 ft
Cross-sectional area = $5^2 \cdot \frac{\pi}{4} = 19.635 \text{ ft}^2 \approx 20 \text{ ft}^2$
Volume = $125 \cdot 19.635 = 2454 \text{ ft}^3$
Volume = $2454 / 27 = 91 \text{ yd}^3$
Cost per yd$^3 = $800
Cost per caisson = $91 \cdot 800 = $72,722
Spacing of caissons = 90 – 110 ft (See drawing)
Number of caissons = 85
Total cost: $6,181,370 = $6.2 \cdot 10^6$

Bearing load = 3000 psi (from Osborne Report)
Load per caisson = $3000 \text{ lb} / \text{in}^2 \cdot 20 \text{ ft}^2 \cdot 144 \text{ in}^2 / \text{ft}^2 = 8,640,000 \text{ lb}$
Total load-bearing capacity: $8,640,000 \text{ lb} \cdot 85 = 734 \cdot 10^6 \text{ lb}$

STATIC LOAD CALCULATIONS:

Weight of deck = density of concrete • deck area • thickness
$150 \text{ lb} / \text{ft}^3 \cdot 493,000 \text{ ft}^2 \cdot 0.667 \text{ ft} = 49,324,000 \text{ lb}$

Steel I-beams W 24 X 250:
Weight = $250 \text{ lb} / \text{ft}$
Beam spacing = 4 ft
Beam total length: $493,000 \text{ ft}^2 / 4 \text{ ft} = 123,250 \text{ ft}$
Total beam weight = $123,250 \text{ ft} \cdot 250 \text{ lb} / \text{ft} = 30,813,000 \text{ lb}$

1 deck load: $49,324,000 \text{ lb} + 30,813,000 \text{ lb} = 80 \cdot 10^6 \text{ lb}$
2 decks load: $89 \cdot 10^6 \text{ lb} + 2 = 160 \cdot 10^6 \text{ lb}$
Support girder load = $8 \cdot 10^6 \text{ lb}$
Support I-beam load = $3 \cdot 10^6 \text{ lb}$
Column load = $0.7 \cdot 10^6 \text{ lb}$


Steel I-beam W 24 X 250:
Given a centered single load = 20000 (lb)
Length of Beam - L : 1200 (in)
Moment of Inertia - I : 8496 (in$^4$)
Modulus of Elasticity - E : 29000000 (psi)
Perp. distance from neutral axis - y : 13 (in)
Support Force - R1 : 10000 (lb)
Support Force - R2 : 10000 (lb)
Maximum Stress - $\sigma$ : 9187 (psi)
Maximum Deflection - $\delta$ : 2.92 (in)
WEIGHT OF ONE SQUARE OF DECK (Supported by one column)
90ft x 100 ft = 9000 ft²
9000 ft² • 0.667 ft • 150 lb / ft³ = 900,450 lb

WEIGHT OF ONE SQUARE OF I-BEAMS
(9000 ft² / 4 ft) • 207 lb /ft = 465,750 lb

TOTAL WEIGHT OF ONE SQUARE = 900,450 lb + 465,750 lb = 1,366,200 lb

COLUMN CALCULATIONS
(Steel column: type not specified, only cross-sectional area)
Weight of one square resting on one column = 1,366,200 lb + (3 • 18,270 lb) = 1,421,010 lb
Column cross-section for 20,000 psi stress ≈ 71.05 in²
Weight of column = 71.05 in² / 144 in²/ft² • 490 lb/ft³ • 34 ft = 8220 lb

STRESS ON DUAL-GIRDER LOWER DECK SUPPORT BETWEEN COLUMNS (per girder)
24 in. flange; 72 in. height; 3 in. flange thickness; 1.5 in. web thickness; Cross-section - 243 in²
Weight/ft – 243 in² / 144 in²/ft² • 490 lb/ft³ = 825 lb/ft; weight of 90-ft beam = 74,250 lb
Unit Load - q : 632 (lb/in) (Uniformly distributed load)
Total Load : 682560 (lb)
Length of Beam - L : 1080 (in)
Moment of Inertia - I : 195000 (in⁴)
Modulus of Elasticity - E : 29000000 (psi)
Perp. distance from neutral axis - y : 36 (in)
Support Force - R1 : 341280 (lb)
Support Force - R2 : 341280 (lb)
Maximum Stress - σ : 17011 (psi)
Maximum Deflection - δ : 1.98 (in)

STRESS ON TRIPLE-BEAM UPPER DECK SUPPORT BETWEEN COLUMNS (per beam)
W 40 X 503: 503 lb/ft. Weight of 90-ft beam = 18,270 lb
Unit Load - q : 422 (lb/in) (Uniformly distributed load)
Total Load : 455760 (lb)
Length of Beam - L : 1080 (in)
Moment of Inertia - I : 50400 (in⁴)
Modulus of Elasticity - E : 29000000 (psi)
Perp. distance from neutral axis - y : 21 (in)
Support Force - R1 : 227880 (lb)
Support Force - R2 : 227880 (lb)
Maximum Stress - σ : 25637 (psi)
Maximum Deflection - δ : 5.11 (in)

Cost of deck concrete: $850/yd³, 493,000 ft² • 0.667 ft²/27 ft³/yd³ = 12,178 yd³, 12,178 yd³ • $850/ yd³ = $10,352,000
Cost of reinforcing steel: $1.25/lb; 205 lb of steel per cubic yard of concrete: 12,178 yd³ • 205 lb/ yd³ • $1.25/lb = $3,121,000
Subtotal of deck concrete/steel = $13,473,000

COST OF 493,000 ft² I-BEAMS (Using Florida Estimating Data Structures Design Guidelines)

Cost of W 24 X 250 rolled wide flange sections: $1.75/lb. $1.75/lb • 30,813,000 lb = $53,923,000 Total deck cost = $64,396,000

COST OF LOWER DECK SUPPORT PLATE GIRDERs (Using Florida Estimating Data Structures Design Guidelines)

Number of 24” flange 67” web plate girders = 108
Weight of each girder = 825 lb/ft • 90 ft = 74,250 lb
Total weight = 74,250 lb • 108 = 8,019,000 lb
Total cost = 8,019,000 lb • $1.80/lb = $14,033,000

COST OF UPPER DECK SUPPORT I-BEAMS (Using Florida Estimating Data Structures Design Guidelines)

Number of W 40X 503 I-beams = 184
Weight of each beam = 503 lb/ft • 90ft = 18,270 lb
Total weight = 18,270 lb • 184 = 3,361,680 lb
Total cost = 3,361,680 lb • $1.75 lb = $5,883,000

COST OF UPPER DECK COLUMNS (Using Florida Estimating Data Structures Design Guidelines)

Number of columns = 85
Weight on each column = 1,366,200 lb + (3 • 18,270 lb) = 1,421,010 lb
Cross section = 1,421,010 lb/20,000 lb/in² = 71 in²/144 in²/ft² = 0.4934 ft²
Weight of each column = 0.4934 ft² • 34 • 490 lb/ft² = 8220 lb
Total weight = 8220 lb • 85 = 698,700 lb
Total column cost = 698,700 lb • $1.80 = $1,258,000

COST OF DRILLED SHAFT [CONCRETE PILING] ON LAND (Using Florida Estimating Data Structures Design Guidelines)

Cost = $510 per linear foot for a 5-ft diameter piling
$510/ft • 125 ft • 85 = $5,418,750

COST OF CAISSONS USING OUTSIDE SOURCE FIGURE OF $800 PER CUBIC YARD: $6,181,000

COST OF LOWER DECK ONLY

$64,396,000 Lower deck
$14,033,000 Lower deck support girders
$6,181,000 Pilings/Caissons
$84,610,000 TOTAL

COST OF UPPER DECK ONLY

$64,396,000 Upper deck
$5,883,000 Upper deck support beams
$1,258,000 Upper deck columns
$71,537,000 TOTAL

COST OF BOTH DECKS (“BOAT” DESIGN)

$84,610,000 Lower deck
$4,610,000 Lower deck support girders
$6,181,000 Pilings/Caissons
$94,972,000 TOTAL
$71,537,000 Upper deck
$5,883,000 Upper deck support beams
$1,258,000 Upper deck columns
$84,610,000 TOTAL

$156,147,000 GRAND TOTAL

NOTE: 2007 Florida Rough Estimating data for Continuous Span Concrete Deck / Steel Girder Bridge

$135/ft² low estimate For 2 decks:  $135/ft² • 986,000 ft² = $133,110,000
$170/ft² high estimate For 2 decks: $170/ft² • 986,000 ft² = $167,620,000

Copyright © 2009 Citizens’ Vision, P.O. Box 32700, Cleveland, OH 44132-0070
Contact Steve Merkel or Ray Saikus — Tel: (216) 514-7001
E-mail: info@citizensvision.org
www.citizensvision.org
SE/NW SECTION ELEVATION OF CHAMPAGNE / BOAT BUILDING FOUNDATION AND DECKS
AREAS AVAILABLE FOR CAISSONS TO SUPPORT “TOAST” CONVENTION CENTER
90-FT (APPROX) SPACING PATTERN FOR 74 CAISSONS FOR “TOAST” CONVENTION CENTER
AREAS AVAILABLE FOR CAISSONS TO SUPPORT “BOAT” CONVENTION CENTER
90-FT (APPROX) SPACING PATTERN FOR 83 CAISSONS FOR “BOAT” CONVENTION CENTER